

2011 South African Railways and Harbours Conference

Port Expansion Plans for Durban

Dave Stromberg – Transnet Group Planning - 8 April 2011

Introduction and Context

Transnet Container Strategy

2050 Vision for the Durban to Gauteng Freight Corridor

Containers in the Port of Durban

The new Dig-Out Port at the old Durban Airport Site

TRANSNET IN TALKS WITH ACSA FOR OLD AIRPORT SITE

Durban dugout port to cost R100bn

HE PLANNED DUP ban dogout port at the old airport site is expected to cost R50 bil-Hor in its first phase of devolopment and construction needs to atart by 2013 for it to be roady by 2019.

That's the word from Transpet chairman Mafika Micwaniani, who was speaking to The Mercury on the sidelines of the Durban Invest business breakfast in the city yesterday.

"We have to develop the dugout port at the old airport to meet future demand and ensure Durbon remains the tuniest port in Africa... This mega project is going to Juppen; it is just a matter of Transpet securing the land from the Airports Company South Africa (Acan) and getring the necessary approvals, he said.

Transpet chief executive Beian Molefe said negotiations to buy the airport site were at are advanced stage.

"We have been throwing numbers back and forth with regards to a price for the atte. Negotiations are ongoing and we still have to agree on a final price. The dugout port is a multibillion rand project, but the entire capital required

would not come from just Transnet or the government; we are looking at the private sector to participate in the project.

There is an opportunity hard for the private acctor to both present in the duscout port project and also possibly be involved in the new ports openations... This could be a public-private partnership. The private sector needs to play a rule," he said.

Micwanazi said that the current Durben port was expected to reach capacity by 2019/2020 based on growth

MOLEFE

expanded with proposals to dig out the Bayhead area. Also shown are proposed dedicated freight routes and an upgraded rail corridor to the two ports. forecasts of container CRAPHICS: TRANSPET

"We need to start construction on the diagout port by 2015 to complete the first phase of the project by 2019, when container capacity at the current Durhan port is expected to be reached. Phase I of the dogout port project is expected to cost about R50bn, However, a further phase

would mean that at least R100bn would be invested in its development over the long teem," he said.

Micwarpan sold be was one

of the chief negotiators for the airport land together with Durban businessman Don Michwanari, Negotiations first started in 2000.

"We are not only talking to Acsa to luy the airport site. We are also negotiating with other adjoining landowners such as the public works and the defence departments as well as private businesses.

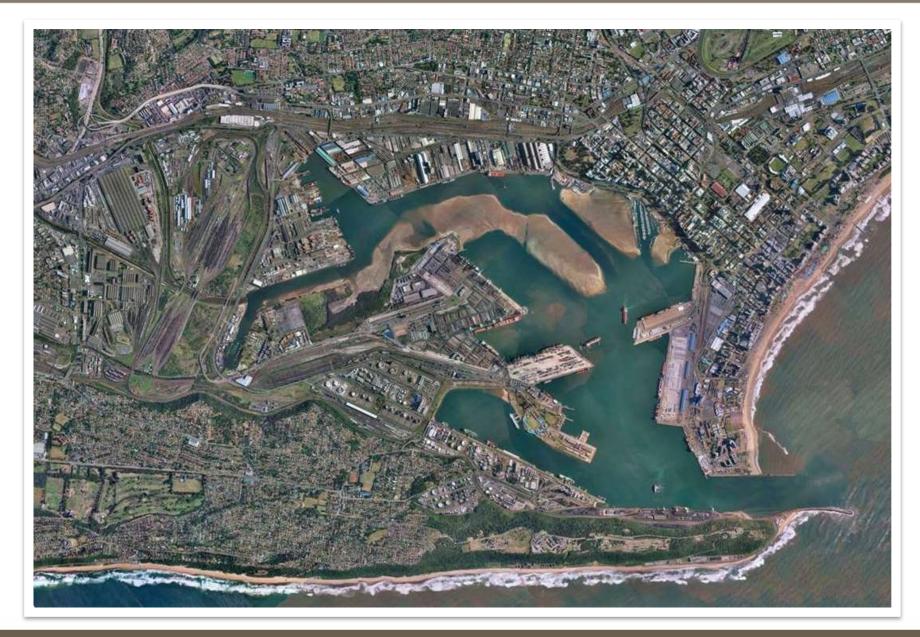
"We are looking at the broader area to better plan for the long term. It is part of our becoder 2000 vision for Durhan and South Africa in terms of port, rall and logistics mastor planning," he said.

Public Enterprises Minister Malust Gigaba said the

government had big drowns for the Durban port, which was crucial to the economic growth and competitiveness of not just KwaZulu-Natal, bur the country as a whole.

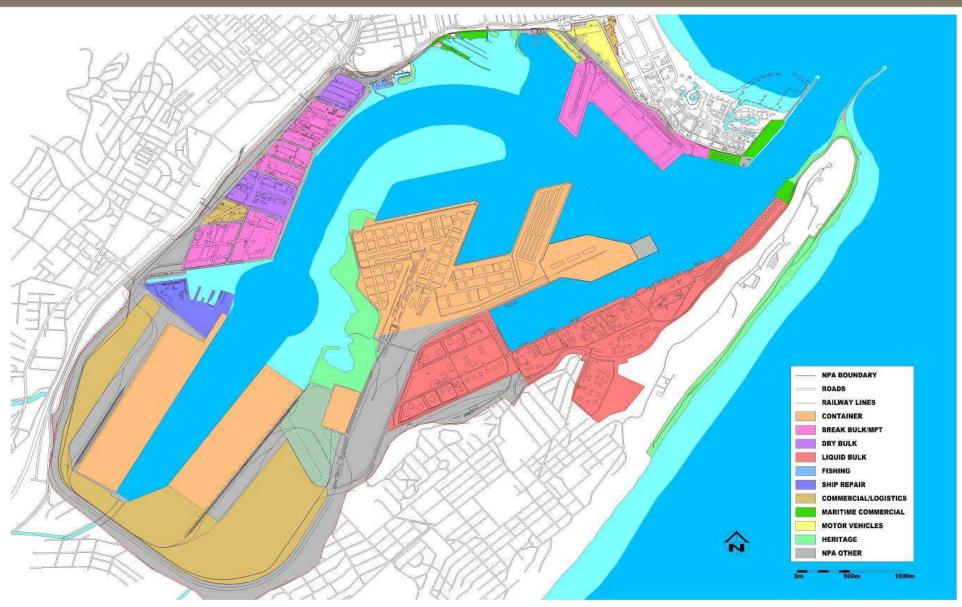
"Our long-term ambitions for growth are not going to be fulfilled with the current Durhan port," Glasba said.

Both Transport Minister Shu Ndebolo and I realise this and we want them Crammet and Acia) to reach a sole agreement by the end of the year. We are taking the matter very seriously and are facing pressure from KwaZulu-Natal Promise Zwell Michian to get finality on the matter."

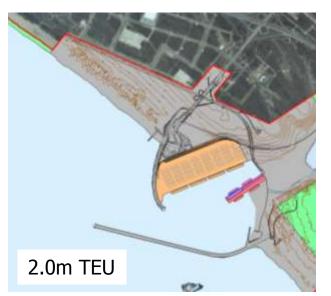

to Bundmens Report

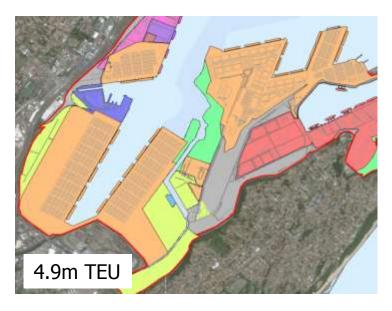
The first phase of the planned Durban dugout port, inset, is expected to cost about RSO billion.

Port of Durban: Increasing congestion and limited expansion opportunities

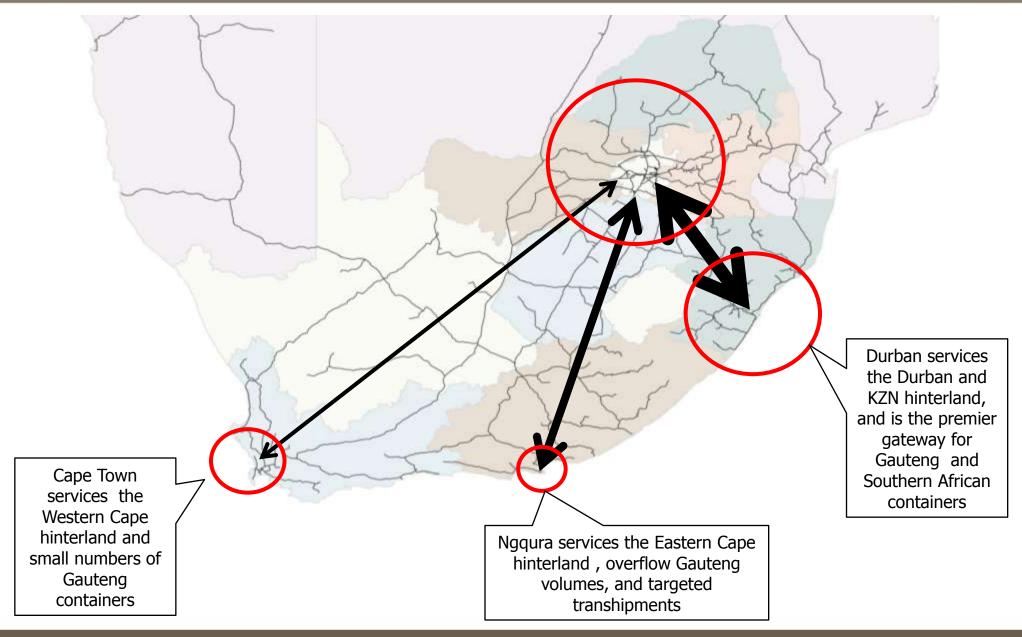

Durban Container Terminal: Diminishing returns?

2007 Durban Port Development Plan: Unfavourable Reception!


The Ngqura Hub Concept



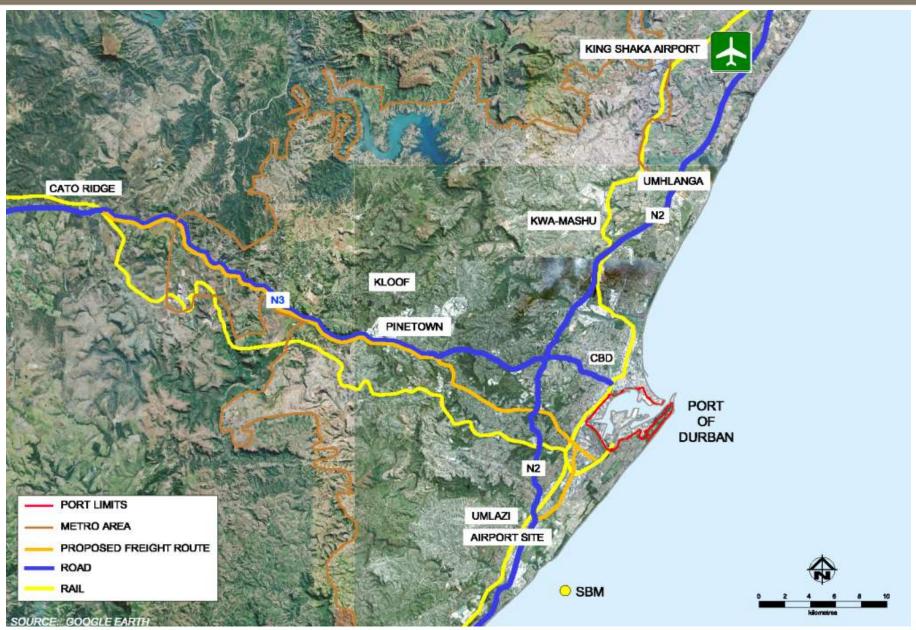
Comparative sizes of Ports of Ngqura and Durban

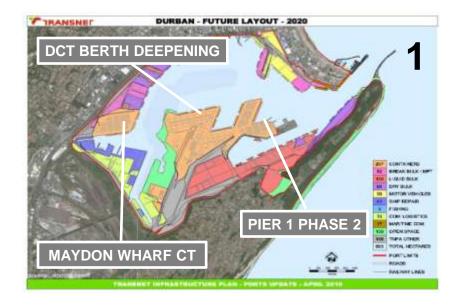


- A four berth terminal at Ngqura will meet the 30 year import/export needs of the central region, while still allowing for significant volumes of targeted new transhipments to fill the spare capacity
- Over the same 30 year period, Durban will need to develop DCT, Pier 1 and Salisbury
 Island, as well as the full Airport Site Expansion
- Ngqura is too small to replace Durban as SA's container hub port

Roles of the South African container ports

The old Durban Airport Site: Potential for Port Expansion?


The Transnet – eThekwini Municipality Shared Vision


Shared Vision - Metro Context

Durban Container Expansion Sequence

Container Expansion Sequence

DCT And Pier 1: 3.3m TEU: 2013

Pier 1 Phase 2: +0.8m TEU: 2017

DCT Deepening: -0.4m TEU: 2013-2017

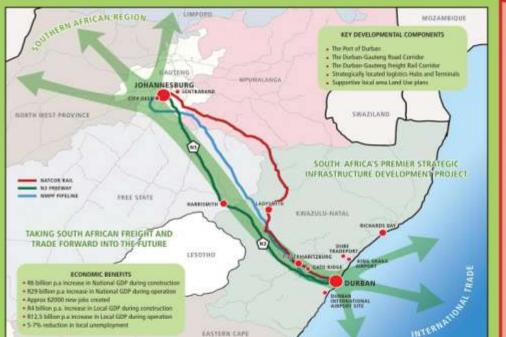
Maydon Wharf CT: +0.15m TEU: 2016

Airport Site: +9.6m TEU: 2020

Bayhead Expansion: +6.0m TEU: Beyond 2040

The 2050 Vision Poster

2050 VISION FOR THE DURBAN-GAUTENG FREIGHT CORRIDOR


for the country and the Southern African region.

backbone of South Africa's freight transportation logistics costs on the corridor, and to provide freight the growing expansion requirements of the Durban network, and is vital in Socilitating economic growth. handling capacity ahead of demand, will be critical its. Its Gauteng freight consider which will form the future economic objectives.

The Durban to Gauteng height comidor forms the South Africa's ability to improve efficiencies and lower. The 2050 vision provides an integrated solution to the region achieving its short, medium and long term | foundation for the establishment of a Southern African regional freight network.

ROAD, BAIL AND PIPELINE PLANS

- Buil capacity opposites on Kwažulu Natal Buil Comiens New Multi Product Finding

- . Possible new rail alignments
- . New back of part rail infrastructure
- . Nature use of North Court line and Bishards Bay sail comitor.
- Phased Gastery rail height reny leiking port carridors.
- . Separate metro and freight rail routes
- + Links Johand terrorials
- . Primides contractivity to cross-border corridors
- . High capacity road access into the port and inbend terrorisis
- « interreudal facilities at major nodes-

The 2050 vision is drewn by three major phases of port development:

- Phase 1: 2010 2020 issurent expansion, in the Port of Dumani
- Phase 2: 2029 2040 (Alepus site development) Physic E 2040 2050 (Rayland development)

The corresponding roll, read, intermedal hub and terminal and land-use projects also follow this phasing sequence.

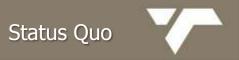
INTERMODAL AND LAND USE PLANS

- Congection mitigation plans
 Rationalised land uses
- . Upgrades to City Deep, Postcon and Vasicon terminals
- . Potential mega deminal at Sentrarand

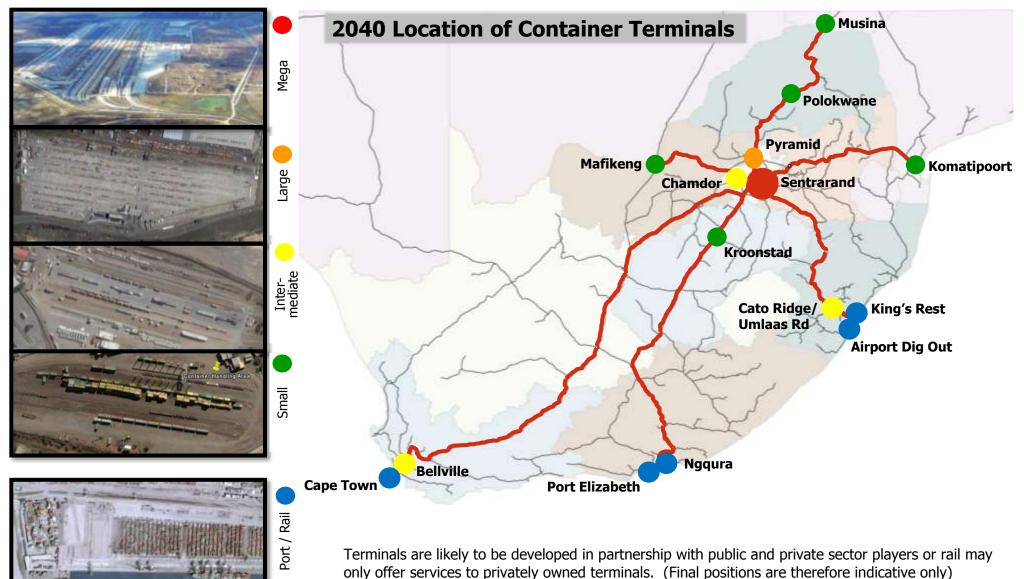
2050 Vision for the Development of the Durban to Gauteng Freight Corridor

'A freight intervention for Southern Africa'

Implementation Plan, August 2010

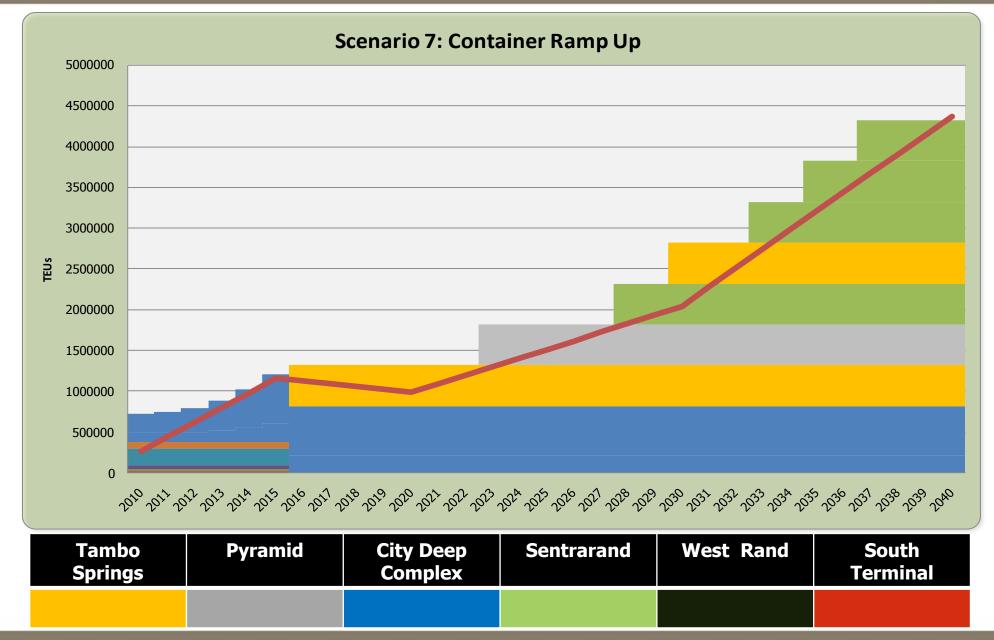


Eastern Port Rail Links


Commodity	Train Length	Wagon Types
Iron Ore	50 wagons	CR-type
Manganese	50 wagons	CR-type
Coal	50, 100 & 200 wagons	CA, CFR
General Freight	Up to 40 / 50 wagons	Vacuum / Air brake
Containers	50 & 75 Wagons	S

Section	Line Type	Axle Load	Traction	Train Control	Shortest Curve	Steepest Gradient
1 Gauteng to Durban	Double	20 t	3 kV DC	СТС	250m	1:66
Section	Line Type	Axle Load	Traction	Train Control	Shortest Curve	Steepest Gradient
2 Durban to Nsese	Double and Single	20t	3kV DC	СТС	250m	1:66
Section	Line Type	Axle Load	Traction	Train Control	Shortest Curve	Steepest Gradient
3 Glencoe to Vryheid	Single	20t	3kV DC	TWS	200m	1:66
Section	Line Type	Axle Load	Traction	Train Control	Shortest Curve	Steepest Gradient
4 Ermelo to Nsese	Double	26t	25kV DC	СТС	219m	1:160
Section	Line Type	Axle Load	Traction	Train Control	Shortest Curve	Steepest Gradient
5 Welgedag to Ermelo	Double	20/26t	3kV DC	СТС	153m	1:100

Intermodal Hubs and Terminals

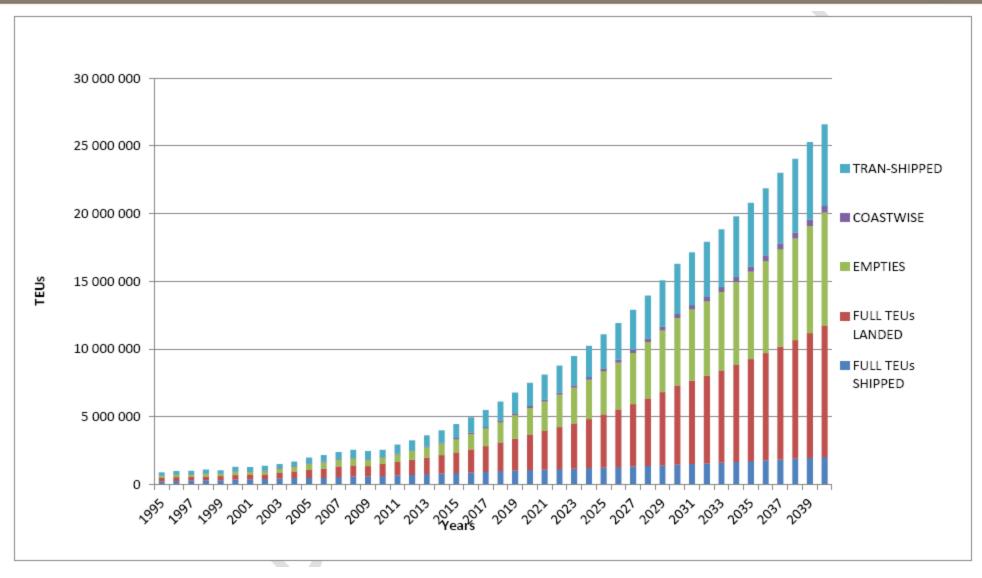


Road to Rail Terminals

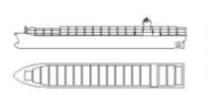
Gauteng terminals: Container ramp up

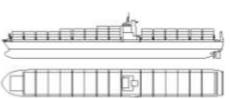
Gauteng terminals: Kaserne

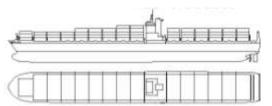
Gauteng terminals: Tambo Springs

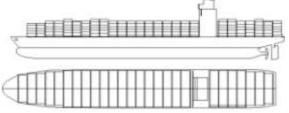

Gauteng terminals: Sentrarand

Port of Durban Container Demand Forecast (GMA 2011)

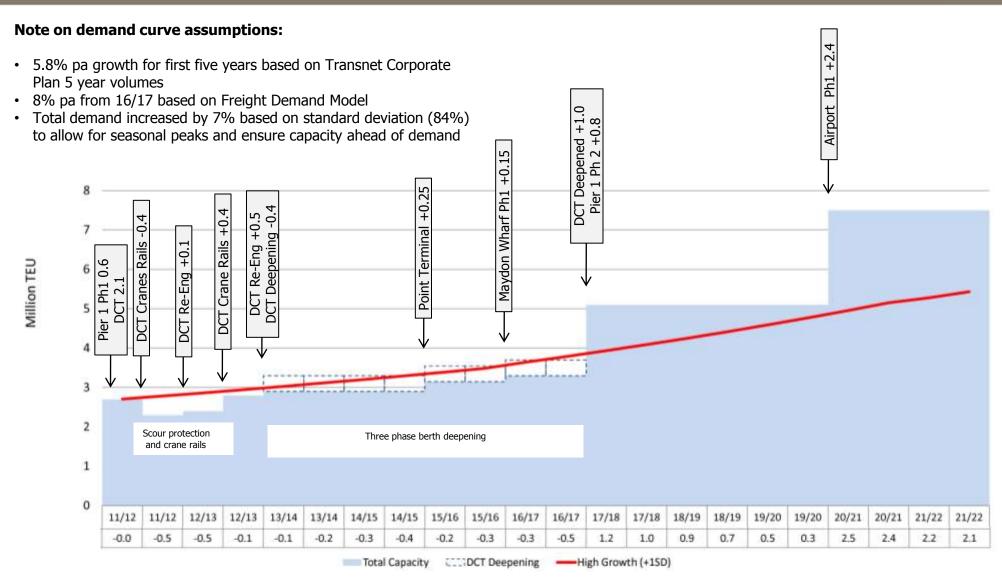





Increasing Container Vessel Sizes: The Port of Durban's Challenge

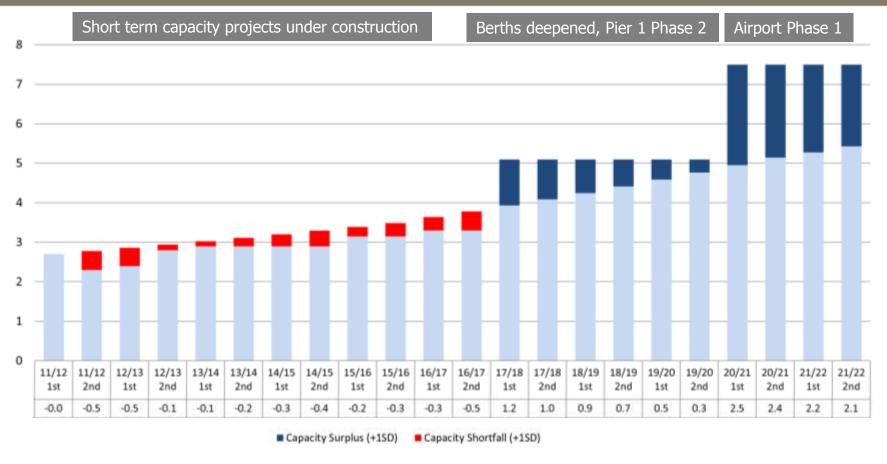


Durban Container Projects: Discussion Programme

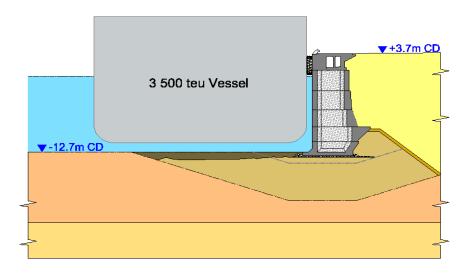

	201	1/12	2012	2/13	2013	3/14	2014	4/15	201	5/16	201	6/17	201	7/18	201	8/19	201	9/20	202	0/21	202	1/22
Point Container Terminal	FEL1	FEL2	FEL3	Proc.				Com.														
+250 000 TEU			EA	EA																		
Maydon Wharf Phase 1	FEL1	FEL2	FEL3	FEL3	Proc.					Com.												
+150 000 TEU			EA	EA	EA																	
Pier 1 Phase 2	FEL2	FEL2	FEL3	FEL3	Proc.							Com.										
+800 000 TEU			EA	EA	EA																	
DCT Berth Deepening	FEL2	FEL3	FEL3	Proc.																		
-400 000 TEU / +1 000 000 TEU			EA	EA																		
Durban Airport Site	FEL1	FEL1	FEL1	FEL2	FEL2	FEL2	FEL3	FEL3	Proc.	Proc.								Com.				
+2 400 000 TEU			EA	EA	EA	EA	EA	EA	EA	EA												

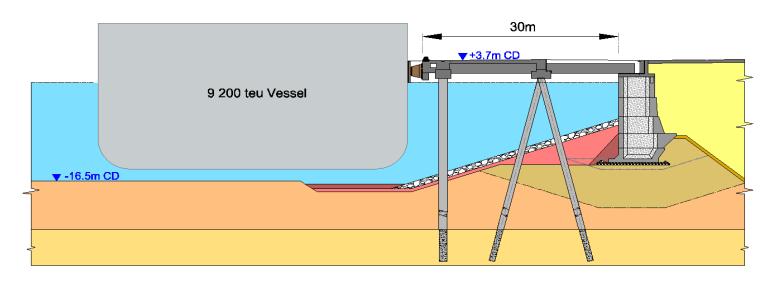
Note on capacity and project timeline assumptions:

- Timelines are based on best available information
- Environmental authorisation period assumes straightforward approval process
- · Six month commissioning period provided before full capacity on line
- Capacity yields are based on planning study simulations. Point CT capacity assumes a single berth terminal
- Pier 1 Phase 2 takes terminal capacity from 0.6m TEU to 1.4m TEU
- Assumed that DCT capacity will be 3.3m TEU after re-engineering, new cranes and deepening (stack capacity is 2.9m TEU)
- Airport Site capacity of 2.4m TEU is first phase of project with total capacity of 9.6m TEU


Durban Container Project Ramp Ups

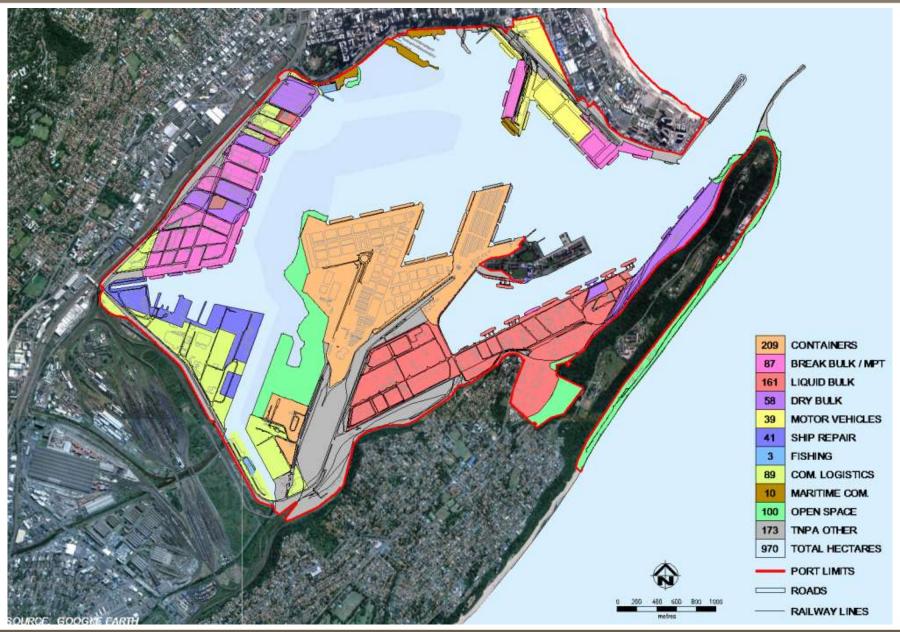
Durban Container Demand vs Capacity

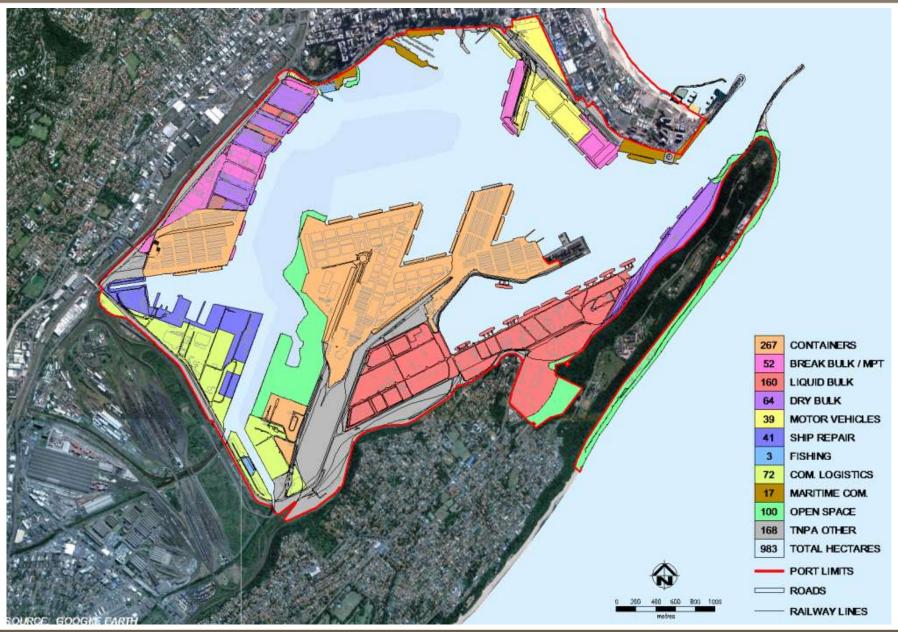


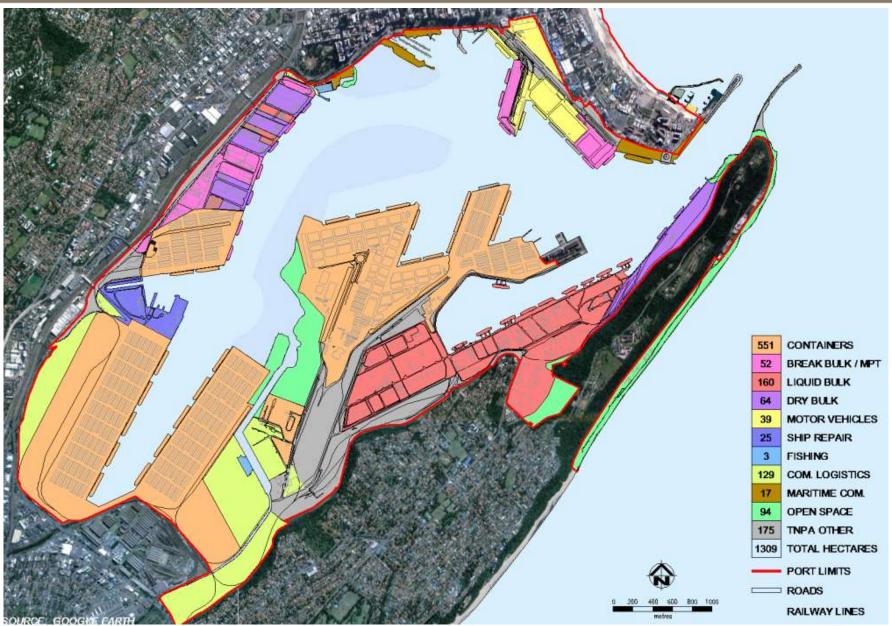

Based on the demand, capacity, and project timeline assumptions used in this scenario:

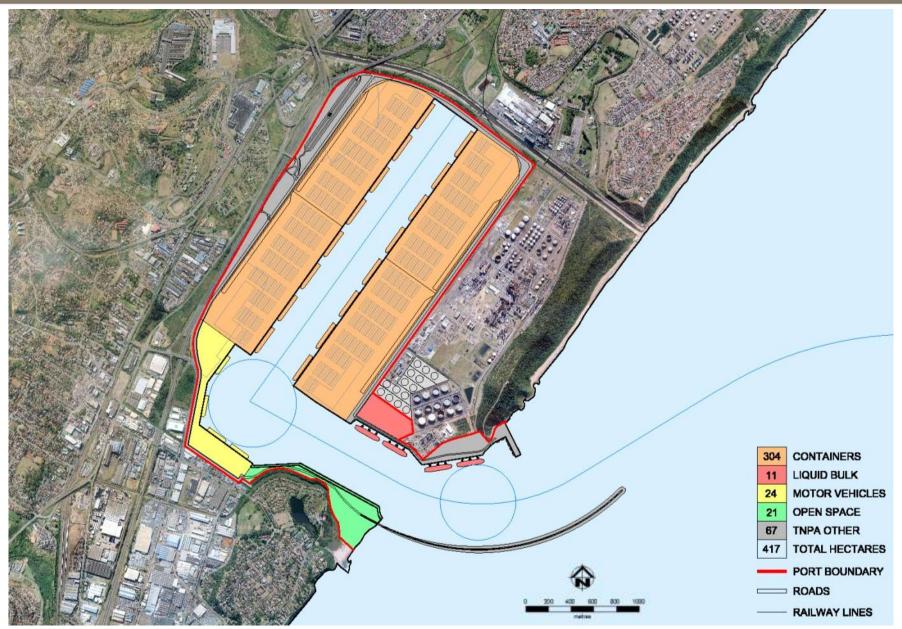
- Durban Containers will not provide sufficient capacity to meet growing demand before Pier 1 Phase 2 becomes operational in 2016/17
- Overflow volumes (transhipment and Gauteng containers) must be rerouted to Ngqura over this period
- The first phase of the Airport Site Expansion will be required to be operational in 2020
- The subsequent phases of the Airport Site Expansion will meet demand for the next 20 30 years, after which Bayhead will be required

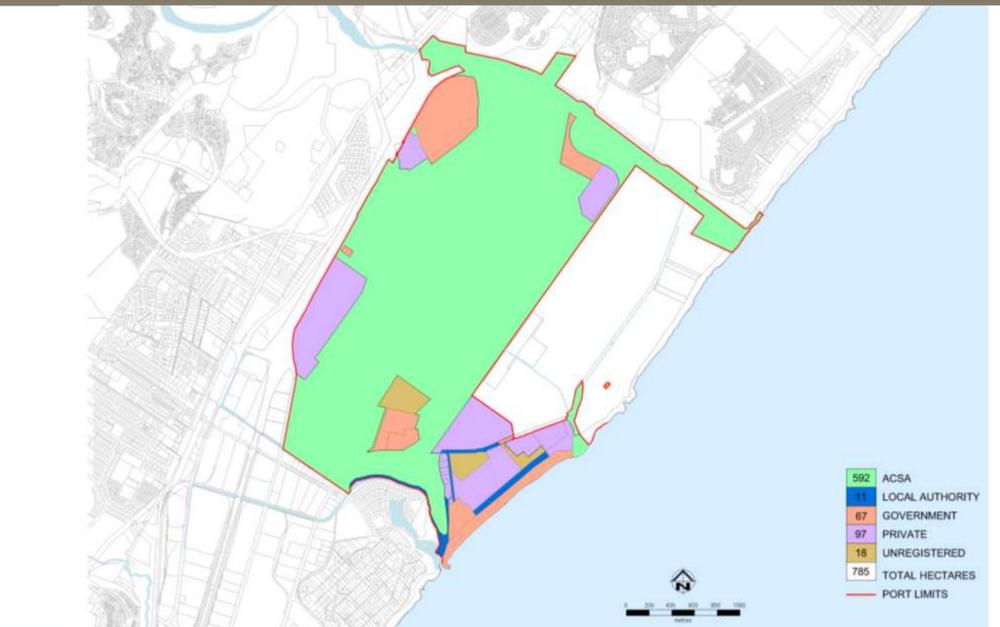
DCT Berth Deepening Proposal




Durban – Current Layout - 2010


Durban – Future Layout with Short Term Expansions– 2020

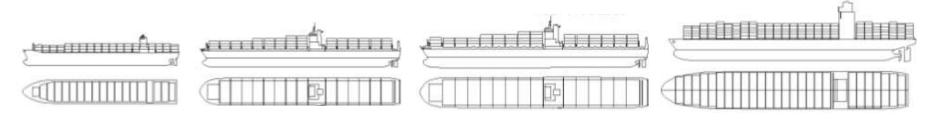

Durban – Future Layout with Bayhead Dig Out – 2050


Durban Airport Site – Future Layout – 2040

Current Land Ownership Property Plan

Airport Site Layout Options

Container Capacity Planning Assumptions



Capacity planning for all new container terminals is based on a progressive ramp-up in productivity compared with current terminal performances, and is benchmarked against global best practice.

Capacity benchmark assumptions: 600 000 TEU per 350m long berth, 1720 TEU per metre of quaywall, and an average of 33 gross crane moves per hour.

All new berths are planned for 9200 TEU vessels, and the new Durban airport site expansion will cater for 15000 TEU vessels.

Container Berth Productivity (2010/11 Transnet Latest Estimates)										
TERMINAL	TEU HANDLED	BERTHS	(TEU/BERTH)	AVERAGE CRANE MOVES						
CAPE TOWN CT	681 727	4	170 432	25 GCM/H						
PE CT	335 900	2	167 950	23 GCM/H						
NGQURA CT	409 649	2	204 824	24 GCM/H						
DURBAN CT	2 524 000	9	280 444	24 (DCT), 28 (Pier 1)						
Planned Container Berth Productivity (TIP 2011)										
DURBAN AIRPORT SITE	9 600 000	16	600 000	33 GCM/H						

3500TEU Panamax

5000TEU Post Panamax

9200TEU Super Post Panamax

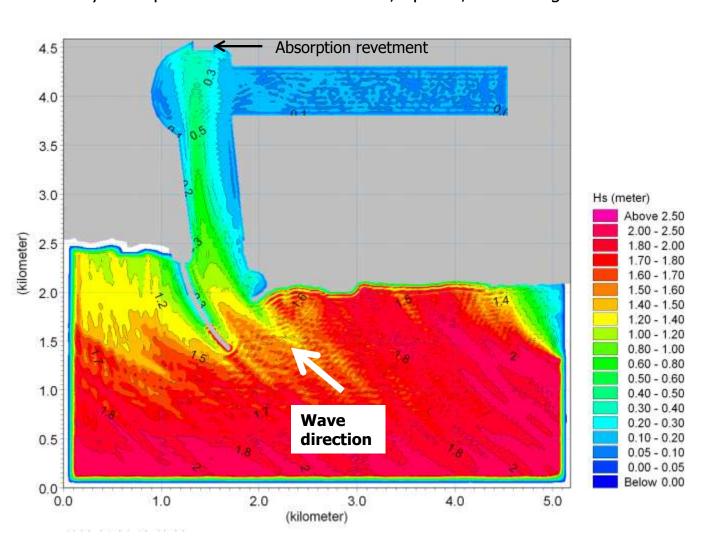
150000TEU Ultra Large Container Ship

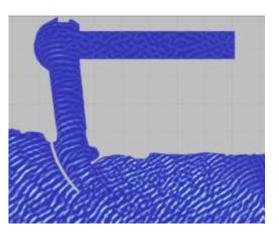
Container Terminal Capacity

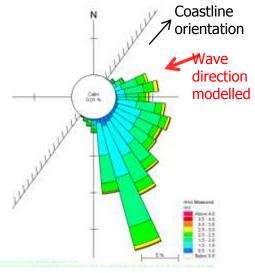
Berth Side

- Vessel Distribution:
 - ULCS 5%
 - Super Post-Panamax 35%
 - Post-Panamax 55%
 - Panamax 5%
- Berth Occupancy: 60-65%
- Berth Utilisation: 50-55%
- TEU factor: 1.7
- Crane moves per hour: 28-36 gmh
- Average cranes per vessel: 1.98-2.5
- Capacity/m: 1720TEU/m
- Capacity/350m Berth: 600 000 TEU/berth

Terminal Side


- Dwell time (average import/export): 5 days
- Maximum stack height: 5 high
- Reserve stack capacity: 25%
- Back of quay terminal depth required: 520m
- Capacity/ha: 33 000 TEU/ha


<u>Total Capacity 9.6 million TEUs</u> (i.e. 2.4 m TEUs per terminal)


Wave Penetration for Phase 4

Easterly short period condition Hs=2m; Tp=9s; Dir: 75deg

Flooding of the Site

The uMlazi Canal can handle the 30 year flood

The 1 in 100yr flood water level reaches levels of between 4m - 6m above MSL

The port development will increase the ground level and worsen flooding of the surrounding areas (e.g. Mondi and SAPREF)

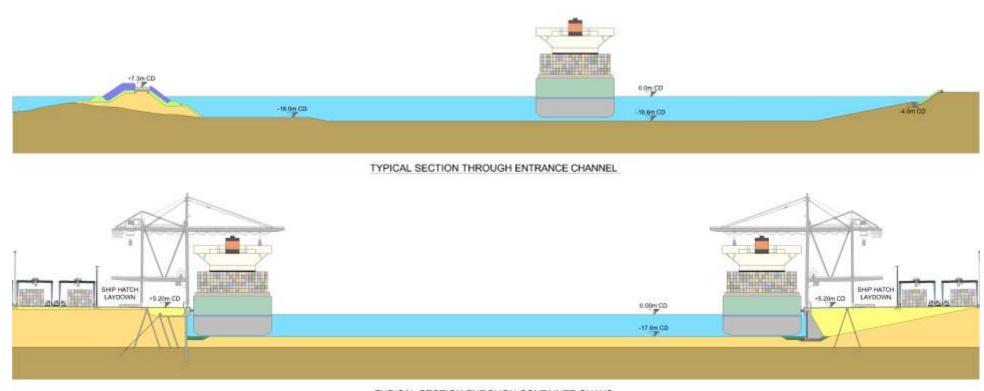
Flooding of the Site

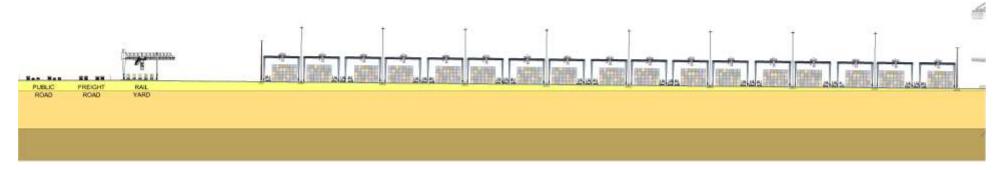
Mitigating Measures:

1. Increase parapet wall height

This would allow the canal to handle larger flood events but localised failure would result in catastrophic flooding.

2. Allow overtopping into the port


This would help reduce the flood risks in adjacent areas (e.g. Mondi and SAPREF).



Typical Port Cross Section

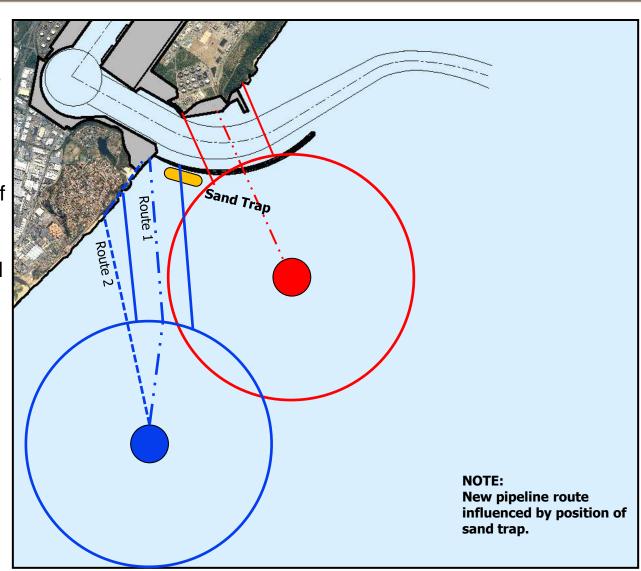
Sapref SBM – Operational Conditions

Currently the SBM operational conditions are:

- ± 80 % of South Africa's crude oil imports
- ± 19 mil tons of crude oil/year
- Average 220 800 tons/vessel
- ± 85 vessels/year (2008)
- Vessels 150 000 DWT to 300 000 DWT
- Located 2.5 km offshore in 40m water depth

NATIONAL STRATEGIC IMPORTANCE

Sapref SBM – Navigation

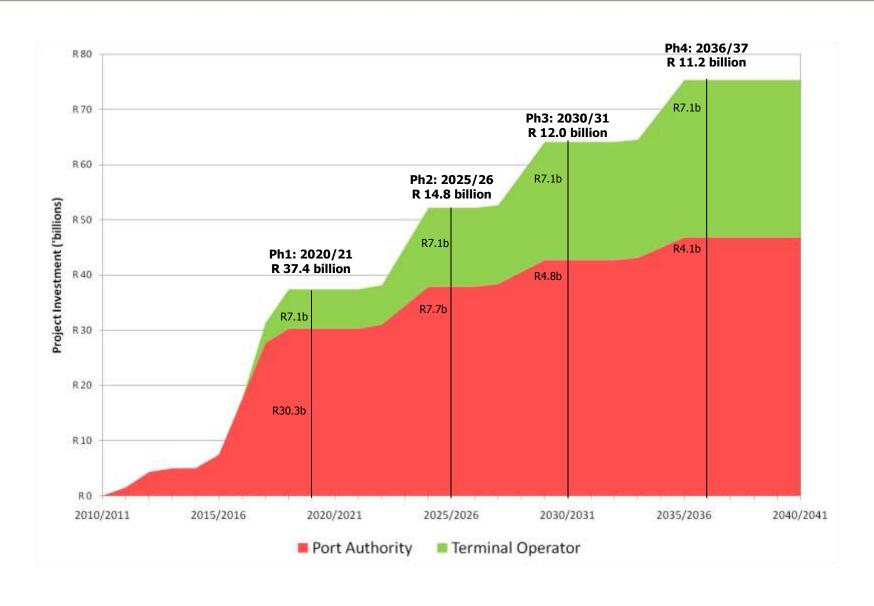


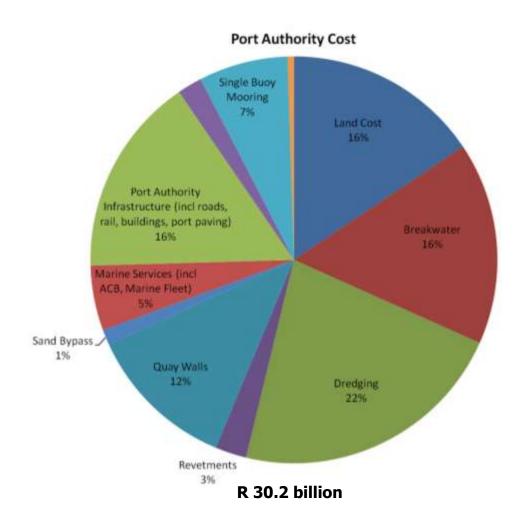
Concerns:

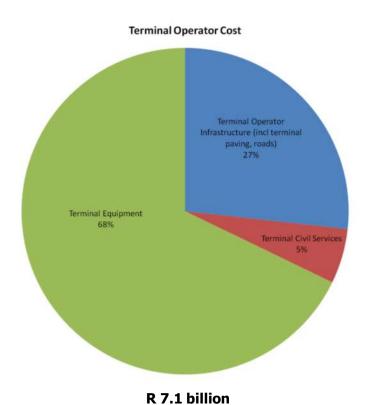
- Security/Safety Exclusion Zone –
 Places a restriction on vessel
 movement around harbour
- Aborted Entry Increased risk of collisions due to proximity of SBM
- 3) Right of Way Conflicts Potential for confusion as a result of dual systems in close proximity

Solution:

Shift SBM further south to try eliminate navigational issues


Implementation Schedule, 10 years


																			- 20		
	2010/11		2011/12		2012/13		2013/14		2014/15	2	2015/16		6/17	2017/18	201	2018/19		2019/20		2020/21	
Site Investigations																				<u> </u>	
Physical Model Study																					
FEL 1: Concept Design																					
FEL 2: Preliminary Design																					
FEL 3: Detailed Engineering																					
FEL 4: Tender and Procurement																					
Construction (Phase 1)																					
Site Establishment & Clearing																					
Earthworks and Dewatering																					
Quay Walls																					
Dredging																					
Breakwaters and Revetments																					
Relocate SBM & Associated Pipelines																					
Civil Infrastructure																					
FEL 4 Commissioning																					
Environmental & Social Process																					
Initial Scan and Study																					
Impact Assessments																					
Environmental Authorisations & Appeals																					
Property Acquisition			ACSA	ACSA	Rem	Rem	Rem														
Project Approvals																					
Transnet Board Submission																					
Cabinet Submission																					
Gazetted Decision																					
Terminal Concessioning																					
Appoint Advisor & Develop Plan																					
Tender, Engineering & Award Construction Contract																					
Terminal Construction																					
Phase 1 Commissioning																					


Project Investment Cash Flow, Non Escalated

The old Durban Airport Site

Airport Site Expansion Phase 1

Airport Site Expansion: Full Development

